4-Arylflavan-3-ols as Proanthocyanidin Models: Absolute Configuration via Density Functional Calculation of Electronic Circular Dichroism ${ }^{\perp}$

Yuanqing Ding, ${ }^{\dagger}$ Xing-Cong Li, ${ }^{*}{ }^{\dagger}+\frac{\hbar}{\dagger}$ and Daneel Ferreira ${ }^{*, \dagger, \dagger}$
National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, and Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677

Received October 13, 2009

Abstract

Density functional theory/B3LYP has been employed to optimize the conformations of selected 4-arylflavan-3-ols and their phenolic methyl ether 3-O-acetates. The electronic circular dichroism spectra of the major conformers have been calculated using time-dependent density functional theory to validate the empirical aromatic quadrant rule applied to the assignment of the absolute configuration of this class of compounds. The modest $6-31 \mathrm{G}^{*}$ basis set was sufficient to produce reasonable spectra. The calculated Cotton effects at $220-240 \mathrm{~nm}$, crucial for the assignment of the C-4 absolute configuration, result from electronic transitions of the molecular orbitals involving the π-electrons of the spatially close aromatic A-ring and 4 -aryl moieties. The sign of this Cotton effect is determined by the orientation of the 4 -aryl substituent: the negative and positive Cotton effects are associated with 4α - and 4β-aryl substituents, respectively.

The proanthocyanidin class of naturally occurring polyphenols has attracted considerable attention over the last several years. Their biological and industrial applications depend on an understanding of their composition, configuration, and conformational behavior including rotation about the interflavanyl bonds and preferred conformations of the heterocyclic dihydropyran rings. Owing to the structural complexities of such polymers, essential features of their dynamic behavior are reliant on projections from monomers and oligomers with limited structural variety. A range of 4-arylfla-van-3-ols has thus been synthesized ${ }^{1}$ as models for configurational and conformational studies of the naturally occurring proanthocyanidins. The conformations of the heterocyclic dihydropyran rings in these compounds were proposed on the basis of the ${ }^{1} \mathrm{H}$ NMR coupling constants, while the assignment of the C-4 absolute configuration by experimental electronic circular dichroism (ECD) was consistent with the aromatic quadrant rule ${ }^{2}$ and exciton coupling ${ }^{3}$ between the electronically allowed transitions of the Aand D-ring aromatic chromophores.

Recent development of density functional theory (DFT) calculations has opened a new avenue for the structural analysis of chiral molecules. ${ }^{4}$ The calculated ECD spectrum of the compound of interest provides critical conformational and configurational information: the closer the calculated and experimental ECD spectra are, the better the calculated conformation and configuration reflect the compound behavior in solution. The purpose of this study was to employ such advanced computational methods to assess the conformations and configurations of selected 4-arylflavan-3-ols in order to understand the theoretical basis of the empirical aromatic quadrant rule applied to the assignment of the absolute configuration of this class of compounds.

Results and Discussion

Four 4-arylflavan-3-ols, $(2 R, 3 S, 4 S)-3^{\prime}, 4^{\prime}, 7$-trihydroxy-4-(2,4,6-trihydroxyphenyl)flavan-3-ol (1a), ($2 R, 3 S, 4 S$)-3', $4^{\prime}, 7$-trihydroxy-4-(2,4-dihydroxyphenyl)flavan-3-ol (2a), ($2 R, 3 R, 4 R$)- $3^{\prime}, 7,8$-trihydroxy-4- (2,4,6-trihydroxyphenyl)flavan-3-ol (3a), and ($2 S, 3 S, 4 R$)- $3^{\prime}, 4^{\prime}, 7-$

[^0]

$\begin{array}{ccc} & R_{1} & R_{2} \\ \text { 1a } & H & H \\ \text { 1b } & \mathrm{Me} & \mathrm{Ac}\end{array}$

$\mathrm{R}_{1} \quad \mathrm{R}_{2}$
$\begin{array}{ccc}\mathbf{3 a} & \mathrm{H} & \mathrm{H} \\ \mathbf{3 b} & \mathrm{Me} & \mathrm{Ac}\end{array}$

$\mathrm{R}_{1} \quad \mathrm{R}_{2}$ $\begin{array}{ccc}\text { 2a } & \mathrm{H} & \mathrm{H} \\ \mathbf{2 b} & \mathrm{Me} & \mathrm{Ac}\end{array}$

$\begin{array}{ll}R_{1} & R_{2}\end{array}$
$\begin{array}{ccc}\mathbf{4 a} & \mathrm{H} & \mathrm{H} \\ \mathbf{4 b} & \mathrm{Me} & \mathrm{Ac}\end{array}$
trihydroxy-4-(2,4,6-trihydroxyphenyl)flavan-3-ol (4a), and their corresponding phenolic methyl ether $3-O$-acetates $(\mathbf{1 b}-\mathbf{4 b})$ were selected as models. These molecules and their enantiomers represent all possible C-ring configurational diastereoisomers of naturally occurring proanthocyanidins. This selection was also based on the availability of experimental ECD spectra of $\mathbf{1 b}-\mathbf{3 b}$ and numerical experimental ECD data of $\mathbf{1 a}, \mathbf{2 a}$, and $\mathbf{4 b} .{ }^{1}$ Compounds $\mathbf{1 a}$ and 1b, with a 4α-aryl group and, thus, $4 S$ absolute configuration, exhibited a high-amplitude, diagnostic negative Cotton effect (CE) in the $220-240 \mathrm{~nm}$ region, while compounds $\mathbf{2 a}$ and $\mathbf{2 b}-\mathbf{4 b}$, with 4β-aryl groups ($4 S$ absolute configuration for $\mathbf{2 a}$ and $\mathbf{2 b}$; $4 R$ for

Table 1. Conformational Analysis of $\mathbf{1 b}$ in the Gas Phase

species	ΔE^{a}	$P_{E} \%^{b}$	$\Delta E^{\prime a}$	$P_{E^{\prime}} \%^{b}$	ΔG^{a}	$P_{G} \%^{b}$
1b1	0.48	20.4	0.49	18.2	0.56	17.3
1b2	0.00	45.8	0.00	41.8	0.00	44.6
1b3	0.67	14.8	0.54	16.9	0.50	19.1
1b4	0.52	19.0	0.35	23.1	0.50	19.0

[^1]

1b3

Figure 1. Optimized geometries of predominant conformers of $\mathbf{1 b}$ at the B3LYP/6-31G* level in the gas phase.
$\mathbf{3 b}$ and $\mathbf{4 b}$), gave positive CEs in the same region. The 4-arylflavan3 -ols ($\mathbf{1 a}$ and $\mathbf{2 a}$) and their respective methyl ether $3-O$-acetates ($\mathbf{1 b}$ and $\mathbf{2 b}$), devoid of intra- and intermolecular hydrogen-bonding interactions, essentially gave experimental ECD data similar to the derivatized analogues. ${ }^{1}$

A systematic conformational search was carried out for compound 1b via Monte Carlo random search in the SYBYL 8.1 program using MMFF94 molecular mechanics force-field calculation. An energy cutoff of $10 \mathrm{kcal} / \mathrm{mol}$ was used to generate a wide window of conformers in the Boltzmann population, affording 153 conformers. For the first 50 conformers, the B-ring, acetoxy group, and D-ring are equatorially positioned, while C-4 is coplanar with the A-ring. Next, the 25 conformers with the lowest energies were geometrically optimized using DFT at the B3LYP/6-31G* level. Four predominant conformers, $\mathbf{1 b 1} \mathbf{- 1 b 4}$, were relocated with a Boltzmann distribution of $17.3 \%, 44.6 \%, 19.1 \%$, and 19.0% by Gibbs free energy (Table 1). The major differences between the four conformers are the orientation of the B-ring and O-methyl groups (Figure 1). Their key dihedral angles are shown in Table 2. The $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ dihedral angles are -20° and -14° to -16°, respectively, in $\mathbf{1 b 1}-\mathbf{1 b 4}$, indicating that $\mathrm{C}-2$ and $\mathrm{C}-3$ of the hetereocyclic dihydropyran ring are located above and below the A/C-plane, respectively, permitting the B-ring and the $3-O$-acetyl group to extend equatorially. The D-ring is located below the A/C-plane of the flavan-3-ol moiety, and hence in the lower left quadrant, as evidenced by the $\mathrm{C} 1^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ dihedral angle of approximately -142° in the four conformers. The $\mathrm{H}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{H}$ dihedral angle in $\mathbf{1 b 1} \mathbf{- 1 b 4}$ ranges from 173° to 178°, supporting a large coupling constant of 10.0 Hz between $\mathrm{H}-2$ and $\mathrm{H}-3$ in the experimental ${ }^{1} \mathrm{H}$ NMR spectrum, while the $\mathrm{H}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{H}$ dihedral angle of 166° to 168° is consistent with a ${ }^{3} J_{3,4}$ value of $9.0-9.8 \mathrm{~Hz} .{ }^{1 \mathrm{a}-\mathrm{c}, \mathrm{e}}$

TDDFT calculations of the predominant conformer $\mathbf{1 b 2}$ at the B3LYP/6-31G* (gas phase), B3LYP/6-311++G**//B3LYP/6-

31G* (gas phase), and B3LYP-SCRF/6-31G*//B3LYP/6-31G* [conductor-like continuum solvent model (COSMO) ${ }^{5}$] levels afforded the ECD spectra shown in Figure 2A. The weighted ECD spectra from the four conformers $(\mathbf{1 b 1}-\mathbf{1 b 4})$ are shown in Figure 2B. The excellent match of the calculated and experimental ECD spectra for compound 1b indicates that such computational methods are reliable for the conformational and configurational analysis of this class of compounds.

On the basis of the optimized conformations of $\mathbf{1 b}$ and consideration of the $\mathrm{C} 2^{\prime \prime} \mathrm{OH} \cdots \mathrm{OC} 3$ hydrogen bonding, a starting geometry of compound 1a was set up to scan its potential energy surfaces (PESs) by rotating the B - and D-rings about the $\mathrm{C}-2-\mathrm{C}-$ 1^{\prime} and $\mathrm{C}-4-\mathrm{C}-1^{\prime \prime}$ bonds at the B3LYP/6-31G* level (gas phase) (Figure 3). Six minima (1a1-1a6, Figure 4) were found and relocated by further optimization at the same level and confirmed by computation of harmonic vibrational frequencies. Hydrogen bonding is present between $\mathrm{C} 2^{\prime \prime} \mathrm{OH} \cdots \mathrm{OC} 3$ in $\mathbf{1 a 1}$ and $\mathbf{1 a} 2$ and between $\mathrm{C} 3 \mathrm{OH} \cdots \mathrm{OC} 2^{\prime \prime}$ in $\mathbf{1 a 3}$ and 1a4. It is interesting that this PES scan and optimization also afforded conformers 195 and 1a6 with π-stacking interactions ${ }^{1 \mathrm{e}}$ between the B - and D-rings, in which the $\mathrm{C} 1^{\prime}-\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9$ dihedral angles are 102° and 101°, respectively, while the $\mathrm{C} 1^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ dihedral angles are -111° in both conformers. However, conformational analysis indicated that 1a1 and 1a2 were the predominant conformers with populations of 52% and 48%, respectively, by Gibbs free energy (see Table 3). The key dihedral angles in $\mathbf{1 a} \mathbf{1}$ and $\mathbf{1 a 2}$ are similar to those in $\mathbf{1 b 1}$ and $\mathbf{1 b 2}$, respectively, except for the minor difference of the $\mathrm{C} 2^{\prime \prime}-\mathrm{C} 1^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 10$ dihedral angle $\left(-142^{\circ}\right.$ vs -118° in $\mathbf{1 a}$ and 1b, respectively) (Table 2). The $\mathrm{H}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{H}$ and $\mathrm{H}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{H}$ dihedral angles are 179° and 161°, respectively, in both $\mathbf{1 a 1}$ and 1a2, also supporting the respective ${ }^{3} J_{2,3}$ and ${ }^{3} J_{3,4}{ }^{1} \mathrm{H}$ NMR coupling constants of 10.0 and 9.8 Hz for compound $\mathbf{1 a} .^{1 \mathrm{a}, \mathrm{c}}$

Similarly, TDDFT calculations of the ECD spectra of conformers 1a1 and 1a2 were conducted at the B3LYP/6-31G* level. The calculated CE around 230 nm corresponds well with the experimentally observed high-amplitude negative CE at 237 nm for compound 1a (Figure 5). ${ }^{\text {e }}$ It seems that this CE results from the negative rotatary strengths at $237(\mathrm{MO} 103 \rightarrow \mathrm{MO} 106), 227.3$ $(\mathrm{MO} 104 \rightarrow \mathrm{MO} 108), 226.9(\mathrm{MO} 102 \rightarrow \mathrm{MO} 107), 221(\mathrm{MO} 104 \rightarrow \mathrm{MO} 110)$, and $220(\mathrm{MO} 100 \rightarrow \mathrm{MO} \rightarrow 6) \mathrm{nm}$ in $\mathbf{1 a 1}$ and those at 237 $(\mathrm{MO} 103 \rightarrow \mathrm{MO} 106), 228(\mathrm{MO} 104 \rightarrow \mathrm{MO} 108), 223(\mathrm{MO} 100 \rightarrow \mathrm{MO} 106)$, and $220.4(\mathrm{MO} 104 \rightarrow \mathrm{MO} 110) \mathrm{nm}$ in $\mathbf{1 a 2}$ (Table 4). However, the biggest contributions are from the electronic transition from MO104 \rightarrow MO108 in both 1a1 and 1a2. The calculated molecular orbitals (MOs) of $\mathbf{1 a 1}$ show that MO104 and MO108 involve the π-electrons of the A-ring and 4 -aryl moieties (Figure 6). This strongly indicates that the diagnostic CE of this class of compounds in the $220-240 \mathrm{~nm}$ region of their CD spectra derives from the chiral perturbation of the two spatially close aromatic chromophores and provides theoretical evidence to interpret the empirical aromatic quadrant rule: the 4α-aryl substituent located in the lower left quadrant makes a negative contribution to the CE at $220-240 \mathrm{~nm}$ in the CD spectrum. ${ }^{\text {1e }}$

The effects of solvent and basis set have also been evaluated by computations at the B3LYP-SCRF/6-31G*//B3LYP/6-31G* level with the COSMO model in MeOH and at the B3LYP/6-311+ $+\mathrm{G}^{* *} / /$ B3LYP/6-31G* level in the gas phase. The ECD curves for both

Table 2. Important Dihedral Angles (deg) of Optimized Predominant Conformers at the B3LYP/6-31G* Level in the Gas Phase

	1a1	1 a 2	1b1	1b2	1b3	1b4	2 a 5	2 a 6	3 a 1	4 a 1	4 a 2	4 a	$4 \mathrm{a6}$
H-C2-C3-H	179	179	173	177	178	177	173	173	-62	61	61	71	72
$\mathrm{H}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{H}$	161	161	166	167	167	168	52	51	-82	-54	-54	-57	-58
C2'-C1 ${ }^{\prime}-\mathrm{C} 2-\mathrm{O} 1$	154	-34	142	-46	146	-45	152	-34	146	-153	31	-169	14
$\mathrm{C} 1^{\prime}-\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9$	180	178	174	175	174	174	163	163	167	-164	-164	-175	-176
C2-O1-C9-C10	-26	-26	-20	-20	-20	-20	-9	-9	-12	13	13	20	21
C3-C4-C10-C9	-7	-6	-15	-14	-15	-16	-24	-24	-14	22	22	21	21
$\mathrm{C} 1^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	-136	-136	-142	-142	-143	-143	104	104	114	153	153	152	153
C 2 "-C1"-C4-C10	-142	-142	-118	-118	-118	-117	157	157	-34	-53	-53	-57	-58

Figure 2. Calculated ECD spectra of conformer $\mathbf{1 b 2}$ (A) and weighted and experimental ECD spectra of compound 1b (B). (black and green: at the B3LYP/6-31G* and B3LYP/6-311++G**//B3LYP/6-31G* levels in the gas phase, respectively; red: at the B3LYP-SCRF/ 6-31G*//B3LYP/6-31G* level with the COSMO model in MeOH ; blue: the experimental ECD spectrum in MeOH).

Figure 3. Potential energy surface of compound 1a at the B3LYP/ $6-31 \mathrm{G}^{*}$ level in the gas phase by rotating the B-ring about $\mathrm{C}-2-\mathrm{C}-$ 1^{\prime} and the D -ring about $\mathrm{C}-4-\mathrm{C}-1^{\prime \prime}$.
conformers $\mathbf{1 a} \mathbf{1}$ and $\mathbf{1 a} \mathbf{2}$ and the weighted curve of compound 1a at both the B3LYP-SCRF/6-31G*//B3LYP/6-31G* and B3LYP/ $6-311++G^{* *} / /$ B3LYP/6-31G* levels were similar to those at the B3LYP/6-31G* level, though a red shift occurred for the wavelengths of identified excitations; for example, for conformer 1a1, the excitations at 227.3 and 226.9 nm at the B3LYP/6-31G* level in the gas phase shifted to 230 and 229 nm at the B3LYP-SCRF/ 6-31G*//B3LYP/6-31G* level and to 228.1 and 227.5 nm at the B3LYP/6-311++G**//B3LYP/6-31G* level, respectively.

The above results demonstrated that the calculated ECD spectra of the free phenolic 4-arylflavan-3-ol (1a) and its corresponding methyl ether 3-O-acetate (1b) were consistent with their experimental data. In addition, the modest B3LYP/6-31G* basis set was sufficient to produce reasonable spectra. To save computational time, we performed ECD calculations of compounds 2a-4a only at the B3LYP/6-31G* (gas phase) and B3LYP-SCRF/6-31G*// B3LYP/6-31G* (solution) levels, which we believe would also reflect the anticipated results from the corresponding methyl ether 3 - O-acetates $(\mathbf{2} \mathbf{b}-\mathbf{4 b})$.
On the basis of the optimized geometries of $\mathbf{1 a}$, the substituents at $\mathrm{C}-2, \mathrm{C}-3$, and $\mathrm{C}-4$ were all set as equatorial, as a starting geometry to scan the PES of 2a at the B3LYP/6-31G* level by rotating the D-ring about the $\mathrm{C}-4-\mathrm{C}-1^{\prime \prime}$ bond (Figure 7). Six conformers (2a1-2a6) were found and relocated by optimizations at the same level. The orientation of the B-ring and the hydrogen bonding between $\mathrm{C}^{\prime \prime} \mathrm{OH} \cdots \mathrm{OC} 3$ and between $\mathrm{C} 3 \mathrm{OH} \cdots \mathrm{OC}^{\prime \prime}$ in $2 \mathrm{a} 1-2 \mathrm{a} 4$

$1 a 1$
1 a 2

$1 a 3$

$1 \mathrm{a5}$

$1 a 4$

196

Figure 4. Optimized geometries of conformers $\mathbf{1 a} \mathbf{1}-\mathbf{1 a 6}$ at the B3LYP/6-31G* level in the gas phase.
(Figure S1, Supporting Information) are similar to those in $\mathbf{1 a 1} \mathbf{- 1 a 4}$. For $\mathbf{2 a 5}$ and 2a6, $\mathrm{C}^{\prime \prime} \mathrm{OH} \cdots \mathrm{OC} 3$ hydrogen bonding was permitted in a conformation with a $\mathrm{C} 2^{\prime \prime}-\mathrm{C} 1^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 10$ dihedral angle of 157° (Figure 7). The $\mathrm{C} 2^{\prime \prime}-\mathrm{C} 1^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 3$ dihedral angles in 2a1-2a6 are $38^{\circ}, 43^{\circ}, 90^{\circ}, 90^{\circ},-80^{\circ}$, and -80°, respectively (Table 2). Conformational analysis indicated that conformers 2 a 5 and $\mathbf{2 a 6}$ are 40% and 60% populated, respectively, by Gibbs free energy (see Table S4, Supporting Information). The H-C2-C3-H dihedral angles in all conformers of 2a are from 172° to 176° and those of $\mathrm{H}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{H}$ from 26° to 48°, supporting the experimental ${ }^{1} \mathrm{H}$ NMR data ($\left.J_{2,3} 8.0, J_{3,4} 5.0 \mathrm{~Hz}^{1 \text { a }}\right)$. The $\mathrm{C}^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ and $\mathrm{C} 1^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$ dihedral angles are 104° and -77°, respectively, in both $\mathbf{2 a 5}$ and 2a6, indicating that the 4β-aryl

Table 3. Conformational Analysis of Compound 1a

species	in the gas phase								in MeOH	
	ΔE^{a}	$P_{E} \%^{b}$	$\Delta E^{\prime a}$	$P_{E} \%{ }^{b}$	ΔG^{a}	$P_{G} \%^{b}$	$\Delta E^{\prime \prime}{ }^{\text {a }}$	$P_{E^{\prime \prime}} \%^{b}$	$\Delta E_{\mathrm{s}}{ }^{\text {c }}$	$P_{\text {Es }} \%{ }^{c}$
1a1	0.00	57.0	0.00	55.2	0.00	51.9	0.00	50.7	0.18	40.5
1 a 2	0.17	43.0	0.12	44.8	0.05	48.0	0.02	49.3	0.00	55.2
1 a 3	5.74	0.0	5.05	0.0	4.17	0.0	4.91	0.0	1.94	2.1
1a4	5.78	0.0	5.00	0.0	3.67	0.1	4.80	0.0	1.90	2.2
1 a 5	10.81	0.0	10.23	0.0	9.59	0.0		0.0	8.68	
196	10.55	0.0	10.09	0.0	9.93	0.0		0.0	8.75	

[^2]

Figure 5. Calculated ECD of predominant conformers of compound 1 (A, B) and its weighted ECD (C). (black and green lines: at the B3LYP/6-31G* and B3LYP/6-311++G**//B3LYP/6-31G* levels in the gas phase, respectively; red: at the B3LYP-SCRF/6-31G*//B3LYP/ 6-31G* level with the COSMO model in MeOH).

Table 4. Important Transition States, Related Rotatory Strengths, and Oscillator Strengths of $\mathbf{1 a 1}$ and $\mathbf{1 a 2}$ at the B3LYP/6-31G* Level in the Gas Phase

species	transition	$\Delta E^{a}(\mathrm{eV})$	$\lambda^{b}(\mathrm{~nm})$	f^{c}	R^{veld}	$R^{\text {lene }}$
1a1	$104 \rightarrow 105$	4.75	261	0.010	-1.6	-1.5
	$104 \rightarrow 106$	4.90	253	0.064	5.3	4.7
	$103 \rightarrow 105$	4.97	250	0.034	-5.7	-3.8
	$104 \rightarrow 106$	5.06	245	0.051	6.5	7.6
	$103 \rightarrow 105$	5.10	243	0.003	5.5	5.3
	$102 \rightarrow 105$	5.14	241	0.001	3.3	3.2
	$103 \rightarrow 106$	5.22	237	0.011	-7.4	-7.2
	$104 \rightarrow 108$	5.45	227.3	0.098	-26.4	-25.9
	$102 \rightarrow 107$	5.46	226.9	0.040	-13.5	-13.0
	$100 \rightarrow 106$	5.59	222	0.039	19.1	18.5
	$104 \rightarrow 110$	5.62	221	0.008	-9.4	-9.8
	$100 \rightarrow 106$	5.64	220	0.010	-15.6	-16.1
	$103 \rightarrow 109$	5.66	219	0.004	16.8	16.2
	$101 \rightarrow 107$	5.74	216	0.015	-20.1	-20.8
1 a 2	$104 \rightarrow 105$	4.74	261	0.013	10.9	10.6
	$104 \rightarrow 106$	4.90	253	0.042	-20.8	-18.9
	$103 \rightarrow 105$	4.98	249	0.029	21.1	20.0
	$102 \rightarrow 105$	5.02	247	0.006	-5.1	-4.9
	$104 \rightarrow 106$	5.04	246	0.051	12.9	13.8
	$103 \rightarrow 105$	5.08	244	0.006	-4.0	-3.8
	$102 \rightarrow 105$	5.16	240	0.003	4.7	4.4
	$103 \rightarrow 106$	5.23	237	0.018	-9.3	-9.2
	$104 \rightarrow 108$	5.44	228	0.128	-57.2	-56.4
	$100 \rightarrow 106$	5.56	223	0.018	-20.1	-20.4
	$104 \rightarrow 110$	5.63	220.4	0.018	-14.2	-14.7
	$100 \rightarrow 106$	5.65	219.6	0.035	20.1	21.2
	$103 \rightarrow 109$	5.65	219.3	0.013	7.3	6.6
	$101 \rightarrow 107$	5.75	216	0.014	10.9	10.8

[^3]substituent is located in the upper left quadrant, which would make a positive contribution to the CE in the $220-240 \mathrm{~nm}$ region of the ECD spectrum according to the empirical aromatic quadrant rule. ${ }^{1 \mathrm{c}, 2}$

The calculated ECD spectra of conformers $\mathbf{2 a 5}$ and $\mathbf{2 a} \mathbf{a}$, weighted ECD spectra of $\mathbf{2 a}$, and the experimental ECD spectrum of $\mathbf{2 b}$ are shown in Figure 8. It shows clearly that the calculated positive CE in the $220-240 \mathrm{~nm}$ region (consistent with the experimentally observed positive CE at 238 nm for $\mathbf{2 a}^{1 \mathrm{e}}$) supports the prediction by the aromatic quadrant rule. ${ }^{1 \mathrm{c}, 2}$

The starting geometry of $\mathbf{3 a}$ was based on the optimized geometry of 2a. The B- and D-rings were set equatorially and the 3-hydroxy group axially. Another factor was the consideration of the intramolecular hydrogen bonding between $\mathrm{C} 8 \mathrm{OH} \cdots \mathrm{O}$. Conformational optimizations at the B3LYP/6-31G* level indicated that a conformer (3a1) (Figure 9) with an intramolecular hydrogen bonding between $\mathrm{C} 8 \mathrm{OH} \cdots \mathrm{O} 1$ was 99.9% populated compared to the conformer without the hydrogen bonding. Conformer 3a1 did not possess hydrogen bonding between $\mathrm{C}^{\prime \prime} \mathrm{OH} \cdots \mathrm{OC} 3$ as in 1a1 and $\mathbf{1 a} \mathbf{2}$ due to the α-axial position of the 3 -hydroxy group and the trans-orientation of the 3 -hydroxy and 4 -aryl substituent (Dring). Despite the differences of the C-ring configurations, 3a1 has a C-ring conformation similar to those of $\mathbf{1 a}, \mathbf{1 b}$, and $\mathbf{2 a}$, as

MOS

MO103

M0107

MO100

MO101

MO105 (LUMO)

MO109

Figure 6. Some molecular orbitals involved in important transitions regarding ECD spectra of conformer $\mathbf{1 a 1}$ in the gas phase at the B3LYP/6-31G* level.

Figure 7. Potential energy surface and optimized geometries of predominant conformers of compound 2a at the B3LYP/6-31G* level in the gas phase.
indicated by the $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ dihedral angles (Table 2). As in $\mathbf{2 a 5}$ and 2a6, the 4 -aryl substituent is located in the upper left quadrant, which would lead to a positive CE in the $220-240 \mathrm{~nm}$ region of the ECD spectrum according to the empirical aromatic quadrant rule. ${ }^{1 \mathrm{c}, 2}$

Figure 8. Calculated and weighted ECD spectra of 2a and experimental ECD spectrum of $\mathbf{2 b}$ (black: at the B3LYP/6-31G* level in the gas phase; red: at the B3LYP-SCRF/6-31G*//B3LYP/6-31G* level with the COSMO model in MeOH ; blue: the experimental ECD spectrum in MeOH).

Figure 9. Optimized geometry of the predominant conformer 3a1 and calculated ECD spectra of compound 3a and the experimental ECD spectrum of 3b (black: at the B3LYP/6-31G* level in the gas phase; red: at the B3LYP-SCRF/6-31G*//B3LYP/6-31G* level with the COSMO model in MeOH; blue: the experimental ECD spectrum in MeOH).

Figure 10. Potential energy surface of $\mathbf{4 a}(\mathrm{A}, \mathrm{B})$ at the B3LYP/6-31G* level and its weighted ECD spectra (C, black: at the B3LYP/6$31 \mathrm{G}^{*}$ level in the gas phase; red: at the B3LYP-SCRF/6-31G*//B3LYP/6-31G* level).

The calculated ECD spectrum of 3a1 and the experimental ECD spectrum of 3b are shown in Figure 9 (assuming 3a and 3b have similar ECD spectra). The two experimentally observed positive CEs in the $220-240 \mathrm{~nm}$ region of the ECD spectrum are corroborated by the two strong positive rotatory strengths at 226 and 216 nm in the calculated ECD spectrum at the B3LYP/6-31G* level (gas phase), again supporting the applicability of the aromatic quadrant rule. ${ }^{1 \mathrm{c}, 2}$

For the last compound (4a) in our study set, the B- and D-rings were similarly equatorially oriented and the $\mathrm{C} 2{ }^{\prime \prime} \mathrm{OH} \cdots \mathrm{OC} 3$ intramolecular hydrogen bonding was considered when setting up the starting conformation to scan the PES by rotating the $\mathrm{C}-2-\mathrm{C}$ 1^{\prime} and $\mathrm{C}-4-\mathrm{C}-1^{\prime \prime}$ bonds at the B3YP/6-31G* level (Figure 10). Six conformers ($\mathbf{4} \mathbf{a} \mathbf{1}-\mathbf{4 a 6})$ were found and confirmed at the same level. The $\mathrm{C}^{\prime \prime} \mathrm{OH} \cdots \mathrm{OC} 3$ hydrogen bonding was found in 4a1, $\mathbf{4 a 2}, \mathbf{4 a 5}$, and $\mathbf{4 a 6}$ (Figure 10) and $\mathrm{C}^{\prime \prime} \mathrm{O} \cdots \mathrm{HOC} 3$ hydrogen bonding in $\mathbf{4 a 3}$ and $\mathbf{4 a 4}$ (Figure S3, Supporting Information). However, conformational analysis indicated a distribution of 28%, $50 \%, 8 \%$, and 14% for the predominant conformers $\mathbf{4 a} \mathbf{1}, \mathbf{4} \mathbf{a}, \mathbf{4 a 5}$, and $\mathbf{4 a 6}$, respectively, by Gibbs free energy. These differ as far as the orientation of the 3-hydroxy group is concerned (Figure 11). A distinguishing feature for this seemingly sterically hindered molecule is the change of the C-ring conformation, primarily due to the inversion of the $\mathrm{C}-2$ configuration when compared to the aforementioned compounds. The $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{C} 3-\mathrm{C} 4-$ $\mathrm{C} 10-\mathrm{C} 9$ dihedral angles are in the range $13-21^{\circ}$ and $21-22^{\circ}$, respectively, in the four conformers (Table 2), indicating that C2

Figure 11. Optimized geometries of predominant conformers of compound $4 \mathbf{a}$ at the B3LYP/6-31G* level in the gas phase.
and C 3 are located below and above the A/C-plane, respectively. Although the $\mathrm{C}^{\prime \prime}-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ dihedral angles in 4a1, 4a2, 4a5,
and $\mathbf{4 a 6}$ increased to about 153° when compared to those of $\mathbf{2 a 5}$ $\left(104^{\circ}\right), \mathbf{2 a 6}\left(104^{\circ}\right)$, and $\mathbf{3 a} \mathbf{(1 1 4 ^ { \circ }) \text { , the } 4 \text { -aryl substituent (D-ring) }}$ is still located in the upper left quadrant. Thus, compound $\mathbf{4 a}$ would show a positive CE in the $220-240 \mathrm{~nm}$ region of the ECD spectrum. The experimentally observed positive CE at 236 nm in $\mathbf{4 b}$ (assuming 4b and 4a show similar ECD spectra) was indeed consistent with the prediction, implying that the conformational inversion of the C-ring will not change the sign of the positive CE in the 220-240 nm region. Again, the calculated ECD spectra of 4a showing a strong positive CE in the $220-240 \mathrm{~nm}$ CD region (Figure 9) provided theoretical support to validate the applicability of the aromatic quadrant rule to define the absolute configuration at C-4 of 4-arylflavan-3-ols.
In summary, DFT/B3LYP has been employed to locate the conformational minima of representative 4-arylflavan-3-ols and their corresponding phenolic permethyl ether 3-O-acetates. TDDFT has been performed to calculate their ECD spectra to validate the empirical aromatic quadrant rule. The diagnostic CE in the 220-240 nm region of the ECD spectra of this class of compounds originates from the chiral perturbation of the spatially close aromatic A-ring and C-4 aryl moieties. The sign of this CE is determined by the orientation of the 4 -aryl substituent: negative and positive CEs are associated with 4α - and 4β-oriented aryl substituents, respectively. These theoretically calculated conformational and ECD characteristics of 4-arylflavan-3-ols may be extended to also address the issue of the absolute configuration of the naturally occurring proanthocyanidins.

Experimental Section

Methods of Computational Calculations. The calculations were performed by the SYBYL 8.1 program (Tripos International, St. Louis, MO) and the Gaussian03 program package. ${ }^{6}$ MMFF94 molecular mechanics force-field and potential energy surface (PES) were employed to search the possible conformations. All ground-state geometries were optimized at the B3LYP/6-31G* level at 298 K , and harmonic frequency analysis was computed to confirm the minima. TDDFT ${ }^{5}$ at the same level was employed to calculate excitation energy (in nm) and rotatory strength R (velocity form $R^{\text {vel }}$ and length form $R^{\text {len }}$ in 10^{-40} erg-esu$\mathrm{cm} /$ Gauss) between different states. The ECD spectra were then simulated by overlapping Gaussian functions for each transition according to

$$
\Delta \in(E)=\frac{1}{2.297 \times 10^{-39}} \frac{1}{\sqrt{2 \pi \sigma}} \sum_{t}^{A} \Delta E_{t} R_{t} e^{-\left[\left(E-\Delta E_{t}\right) /(2 \sigma)\right]^{2}}
$$

where σ is the width of the band at $1 / e$ height and ΔE_{i} and R_{i} are the excitation energies and rotatory strengths for transition i, respectively. Both the $R^{\text {vel }}$ and $R^{\text {len }}$ forms can be used for the simulation of the ECD
spectrum, while the latter may provide better results. ${ }^{4 \mathrm{a}}$ In this work, σ $=0.10 \mathrm{eV}$ and $R^{\text {vel }}$ were used.

Acknowledgment. We thank the Mississippi Center for Supercomputing Research (MCSR) for computational facilities. This work was supported in part by the USDA Agricultural Research Service Specific Cooperative Agreement No. 58-6408-2-0009 and NIH AI027094.

Supporting Information Available: Detailed computational calculated data of compounds $\mathbf{1 a} \mathbf{- 4 a}$ and $\mathbf{1 b}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) (a) Botha, J. J.; Ferreira, D.; Roux, D. G. J. Chem. Soc., Chem. Commun. 1978, 698-700. (b) Botha, J. J.; Young, D. A.; Ferreira, D.; Roux, D. G. J. Chem. Soc., Perkin Trans. 1 1981, 1213-1219. (c) Van der Westhuizen, J. H.; Ferreira, D.; Roux, D. G. J. Chem. Soc., Perkin Trans. 1 1981, 1220-1226. (d) Steynberg, J. P.; Burger, J. F. W.; Young, D. A.; Brandt, E. V.; Ferreira, D. Heterocycles 1989, 28, 923-935. (e) Van Zyl, P. W.; Steynberg, J. P.; Brandt, E. V.; Ferreira, D. Magn. Reson. Chem. 1993, 31, 1057-1063.
(2) DeAngelis, G. G.; Wildman, W. C. Tetrahedron 1969, 25, 5099-5112.
(3) (a) Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy-Exciton Coupling in Organic Stereochemistry; Oxford University Press: Oxford, UK, 1983. (b) Gaffield, W.; Foo, L. Y.; Porter, L. J. J. Chem. Res. Synop. 1989, 144-145.
(4) (a) Diedrich, C.; Grimme, S. J. Phys. Chem. A 2003, 107, 2524-2539. (b) Crawford, T. D.; Tam, M. C.; Abrams, M. L. J. Phys. Chem. A 2007, 111, 12058-12068. (c) Stephens, P. J.; Pan, J.-J.; Devlin, F. J. J. Org. Chem. 2007, 72, 2508-2524. (d) Stephens, P. J.; Devlin, F. J.; Gasparrini, F.; Ciogli, A.; Spinelli, D.; Cosimelli, B. J. Org. Chem. 2007, 72, 4707-4715. (e) Ding, Y.; Li, X.-C.; Ferreira, D. J. Org. Chem. 2007, 72, 9010-9017. (f) Berova, N.; Bari, L. D.; Pescitelli, G. Chem. Soc. Rev. 2007, 36, 914-931. (g) Ding, Y.; Li, X.-C.; Ferreira, D. J. Nat. Prod. 2009, 72, 327-335.
(5) (a) Klamt, A.; Schürmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 2, 799-805. (b) Klamt, A. J. Phys. Chem. 1995, 99, 2224-2235. (c) Eckert, F.; Klamt, A. AIChE J. 2002, 48, 369-385.
(6) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 02; Gaussian, Inc.: Pittsburgh, PA, 2003.

NP900645C

[^0]: ${ }^{\perp}$ Dedicated to the late Dr. John W. Daly of NIDDK, NIH, Bethesda, Maryland, and the late Dr. Richard E. Moore of the University of Hawaii at Manoa for their pioneering work on bioactive natural products.

 * To whom correspondence should be addressed. Tel: 662-915-6742. Fax: 662-915-7989. E-mail: xcli7@olemiss.edu (X.-C.L.). Tel: 662-9157026. Fax: 662-915-6975. E-mail: dferreir@olemiss.edu (D.F.).
 ${ }^{\dagger}$ National Center for Natural Products Research.
 * Department of Pharmacognosy.

[^1]: ${ }^{a}$ Relative energy, relative zero point energy, and relative Gibbs free energy at the B3LYP/6-31G* level, respectively (kcal/mol). ${ }^{b}$ Conformational distribution calculated by using the respective parameters above at the B3LYP/6-31G* level.

[^2]: ${ }^{a}$ Relative energy, relative zero point energy, and relative Gibbs free energy at the B3LYP/6-31G* level, and relative energy at the B3LYP/ $6-311++\mathrm{G}^{* *} / / \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{*}$ level, respectively ($\mathrm{kcal} / \mathrm{mol}$). ${ }^{b}$ Conformational distribution calculated by using the respective parameters. ${ }^{c}$ Relative energy and conformational distribution calculated at the B3LYP-SCRF/6-31G*//B3LYP/6-31G* level with the COSMO model, respectively.

[^3]: ${ }^{a}$ Excited energy. ${ }^{b}$ Wavelength. ${ }^{c}$ Oscillator strength. ${ }^{d}$ Rotatory strength in velocity form $\left(10^{-40} \mathrm{cgs}\right) .{ }^{e}$ Rotatory strength in length form $\left(10^{-40} \mathrm{cgs}\right)$.

